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We consider the problem of determining the size of drops in a turbulent flow of emulsion transported in a 

pipeline. A critical analysis of various formulas used for talculating the size of the drops is performed. 

Results of theoretical analysis and experimental data are used in a computer search for the best formula 

that would describe the breakup of water drops in an oil emulsion during its transport in a pipeline. 

An analysis of the breakup of drops was made by Hinze on the basis of the hydrodynamic theory developed 

by Taylor and Kolmogorov. Thus, he emplasized the stochastic nature of the phenomenon, introduced the types 

of deformation of disintegrating drops, and showed their connection with the type of flow (uniform, accelerated, 

shear, rotational). He also obtained expressions for dimensionless numbers of the process of breakup [1 ]: 

Nwe = l~cS/(a/d) , Nvi = pd/V~Pdad . (1) 

The breakup of drops occurs at Nwe exceeding a critical value. The latter, in turn, depends on the ratio of 

the viscosities of the phases or, which is the same, on the value of Nvi and can vary in a wide range. Dispersion is 

difficult in the case of phases whose viscosities differ greatly. 

For a highly turbulent flow in which the molecular viscosity of the continuous phase is much lower than 

that of the turbulent one and for small values of Nvi, Kolmogorov [2 ] and Hinze [ 1 ] independently obtained the 

following expression for the size of drops most stable to breakup: 

d ,  = C ( c r / p ) o 6 / c  04  , (2) 

where C is an empirical constant, which according to Hinze is C = 0.725. For a circular pipe e = 2u3/(2D). With 

these relations taken into account, formula (2) can be rewritten as 

d . / D  = 1.516 Re ° l  We - ° 6 ,  (3) 

where Re = pcUD/l~c; We = pcu2D/cr. 

A different dependence was obtained by Sleicher [3]. Analyzing his own experimental data and data 

obtained by Clay and used by Hinze, he showed that d. obeyed the following equation with 35% accuracy: 

d.Pc u = 38 1 +0 .7  (4) 
(7 

He also noted that breakup occurs at the walls of the pipe, where turbulence is least isotropic and homogeneous. 

Here, predominantly two types of breakup are observed: in the first type, the drop is deformed and, when its length 

is four times its transverse dimension, it is halved; in the second type, fine drops are formed by shredding one 

large drop. 

For water-in-oil emulsions the dimensionless combination t~du/cr is usually much less than unity, and Eq. 

(4) can be converted to a form similar to (3): 
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d . / D  = 38 Re °5  We - I  5 .  (5) 

In contrast  to the Ko l m ogorov -Hi nze  theory (see formula (3)),  in which viscous forces play virtually no 

role, their  contribution to the size turns out to be very noticeable in relation (5). However,  the size of the drops  is 

more sensitive to the flow velocity. It is not difficult to see that according to K o l m o g o r o v - H i n z e  d ,  ,x u - I I  and  

according to Sleicher d .  cc u -2-5. This  contradiction was successfully resolved by Rozentsvaig.  He showed that  in 

the K o i m o g o r o v - H i n z e  theory account for the deformation of a drop due to the effect of the averaged-veloci ty  

gradient  gives for the most  stable size of a drop a dependence that is close to Sleicher 's  formula.  The  express ion 

obtained by Rozentsvaig [4] has the form 

2 
)t (Pcd.u / a )  = C O (v~ D / d . )  -0"3 , (6) 

where the proport ional i ty  factor Co is a function of the viscosity rat io of the phases.  By means  of statistical 

processing of exper imenta l  data,  Rozentsvaig obtained the following express ions  for CO: 

C O 4.27 ~d/gc)  -°38 = , btd//a c < 1.05 ; (7) 

C O = 4 .2 ,  1.05 _</~d//~c < 2.40 ; (8) 

, , ,0.22 
C O = 3.45 qUd//%) , /~d//~c > 2 .40.  (9) 

In application to pipelines and  tubular  appara tuses ,  the nonuniformity  of the turbulent  field nea r  the walls 

leads to substant ial  enhancement  of the role of viscous forces in the breakup of drops. From express ions  (7)-(9)  it 

follows that  the effect will be maximum,  i.e., the drops will turn out to be smallest ,  when the viscosities of the 

phases  are  near ly  the same.  

For water-in-oil  emulsions it is necessary to use expression (7). Substi tut ing it into Eq. (6) and  solving for 

d . / D  gives the following formula 

-0 54 ReO.41 We-l.43 d . / D  = 52.68 (ad /#c)  (lO) 

Compar ing  formula (10) with (5), we can actually see that the connection between d . ,  We, and  Re has 

virtually the same form. However, formula (10) is more general,  since in contrast  to (5), as well as to (3), it involves 

a factor that  accounts for the difference between the viscosities of the phases.  As regards  numerical  values,  for a 

pipeline 0.2 m in diameter ,  oil whose densi ty and  viscosity are 870 k g / m  3 and  0.01 Pa . sec ,  respectively,  and  a 

phase tension of 0.02 N / m ,  the d iameter  of the water  drops will be 3.48 mm according to formula  (3) and  1.24 

mm according to formula (5). For the same parameters  formula (10) yields the values 1.34 and  4.64 mm for 

lad/lu c equal to 1.0 and  0.1, respectively. The  value 4.64 mm corresponds  to a water- in-oil  emulsion,  and  as/~c 

increases,  it will increase according to a power law with an exponent  of 0.13 (see formula (10)).  At the same time, 

according to formula (5), as the viscosity of the continuous phase increases,  the d iamete r  of the drops decreases  

according to a power law with an exponent  of 0.5. Such contradictory behavior  of the dependence  of the d i ame te r  

of the drops on the viscosity of the continuous medium results from the empirical na ture  of formulas  (5) and  (10). 

Thus,  relations (7)-(9) were established for disperse systems the viscosity of whose phases  var ied within the limits 

0.96 < ~c < 1.8 mPa . sec ,  0.5 </~d < 32.1 mPa . sec .  In Sleicher 's  exper iments  the viscosity of the d isperse  phase  

had the same limits, whereas  the range of variation of the viscosity of the continuous phase  was wider and  equalled 

(0 .96-3 .96)  mPa .  sec. 

The  goodness-of-f i t  of the relations considered to exper imental  data  can be es tabl ished most easily using 

Figs. l and 2. 
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Fig. 1. Dependence of the size of the drops on the viscosity of the continuous 

phase according to: 1) Sleicher; 2) Rozentsvaig. d . ,  m; It c, Pa.sec.  

Fig. 2. Dependence of the size of the drops on the viscosity ratio of the phases 

according to: 1) Rozentsvaig, 2) Sleicher, 3) Laplace, 4) Kolmogorov-Hinze .  

d°, D, m; ffa,/~c, Pa.sec.  

In p lo t t ing  Fig. 1, r e l a t ions  (5) and  (10) were  b rough t  to the  fol lowin form by us ing iden t i ca l  

transformations: 

log ( d . / A )  = B log/~c, (11) 

where the constants for Sleicher 's formula are 

A = A S =  3 8 a l 5 / ( P c U 2 5  ) ,  B = - 0 . 5 ,  (12) 

and for Rozentsvaig's  formula are 

A = A R  = 56.246 o1"43/(/9~ 02 0.54 2.45. /x d u ) ,  B = 0 .13 .  (13) 

In the upper half-plane of Fig. 1 experimental  data a straight line that represents  Sleicher 's  relat ion are 

given. In the lower half-plane the same are given, but for Rozentsvaig's relation. In both cases the exper imental  

data are the same [3 ! (encircled). 

It is evident that in the absence of the lower left experimental  point, nei ther  of the formulas can clearly be 

preferred. However, this point and the disposition of the straight lines relative to the regions occupied by the 

experimental  data justify the choice of formula (5) for the case of water-in-oil emulsions. 

The goodness-of-fit  of formulas (5) and (10) to experimental  data as regards the parameter/~d/IXc is 

evaluated in a similar way. Figure 2, in which a = 1.5 and 1.43 and/~ = 0.5 and 0.41 for Sleicher 's  and Rozentsvaig 's  

formula, respectively, confirms the earlier conclusion (see 1 and 2 in the upper part of Fig. 2). This figure also 

contains data (see 4) processed by Kolmogorov-Hinze ' s  relation. It is seen that with in relation to Sleicher 's  

experimental  data formula (3) underest imates the value of the constant.  The  much larger area occupied by the 

experimental points in comparison to I and 2 testifies to the fact that formula (3) is much less adequate  than 

formulas (5) and (10). 
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TABLE 1. Optimum Values of a and fl in Formula (15) 

/3 ~-¢~ ~,: ~ - ~  A 

0.9 

i.0 

1.1 

1.3 

1.2 

1 .4 -1 .3  

1 .7-  1.5 

1.6 

1.7 

1.7 

1.8 

a) 0.6 

b) 1.5 

c) 1.43 

d) 1.0 

0.I 

0.2 

0.3 

0.4 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.I 

0.5 

0.41 

0.25 

0.8 

0.8 

0.8 

0.9 

0.8 

0 . 8 - 0 . 9  

0.8 - 0 . 9  

0.9 

0.9 

0.8 

0.8 

0.5 

1.0 

1.02 

0.75 

1.7 

1.8 

1.9 

2.2 

2.0 

2 . 1 - 2 . 3  

2 . 2 - 2 . 4  

2.5 

2.6 

2.5 

2.6 

1.1 

2.5 

2.45 

1.75 

0.586 

0.245 

0.216 

0.208 

0.209 

0.207 

0.206 

0.207 

0.241 

0.283 

0.332 

0.346 

0.209 

0.212 

0.236 

Note: a) according to formula (3); b) (5); c) (10); d) (14). 

Let us evaluate the size of the drops in a flow from the condition that a drop will break up if the averaged 

value of the pressure fluctuations, which is of the order  of pc u2, is equal to or greater  than the excess pressure in 

the drop. According to Laplace, this pressure is proportional to a /d .  Therefore ,  for d = d.  we have the equality 

a / d .  = c o n s t  pc u2. According to Levich,  for  a c i rcular  tube u2p = c o n s t  u 2 / Re  °'25. After  subs t i tu t ion  and  

transformations,  we can easily obtain the following formula: 

d . / D  = const Re °25 We - 1 °  (14) 

Exper imenta l  data  of Sleicher and relation (14) are given in Fig. 2 (denoted by 3). Th e  solid line 

corresponds to (14), in which the constant est imated from Sleicher 's data  is equal to 14.25. In comparison with the 

cases considered earlier,  relation (14) is only slightly inferior to formulas (5) and (10) in the spread of the 

experimental  points. At the same time, it follows from relation (14) that d .  = u -1"75, and thus this relation is 

intermediate between Kolmogorov-Hinze ' s  and Sleicher 's formula. 

All the above relations are particular cases of the following general  formula: 

d , / D  = const Re fl We a . (15) 

Performing numerical investigations for various values of a and fl, examined with a step of 0.1, pairs of 

their values were found for which the scatter in the experimental  points (along the ordinate)  tu rned  out to be 

minimum. These  are listed in Table 1. The  table also contains values of the scatter determined from the formula 

A = max log - m i n  log /-~-- R- ~ , 

where d,  e is the size of the drops determined experimentally.  

It is seen from the table that the difference between the opl~mum values of a and fl remains virtually 

unchanged. From this fact and expression (15) it follows that the experimental  data of Sleicher obey the dependence  
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d. ~ D 02-01.  In comparison, the analogous relations from formulas (3), (5), and (10) have exponents that are 

equal to 0.5, 0.0, and -0 .02 ,  respectively. This must be taken into account in using the formulas to calculate 

large-diameter pipelines. 

According to Table 1, the minimum scatter corresponds to the values a --- 1.4-  1.5 and fl -- 0.6. The results 

of an analysis of formulas (3), (5), (10), and (14) presented in the table show that Sleicher's formula is closest to 

the minimum scatter in the points. 

The values of the exponent 7 in the table for the dependence of d. and u -y show that they could lie entirely 

within the range of 1.9-2.5. 

Summarizing, we can note that in all the analyses Sleicher's formula turned out to be preferable.  

Nevertheless, there are no grounds for rcjecting the other relations until a sufficient body of experimental data is 

accumulated. The shortage in them is explained by the difficulties in carrying our "pure" experiments and the 

complexities in selecting phases that have viscosities, densities, and interphase stresses within the ranges needed 

for practice. As concerns the formulas, it should be noted that they were obtained on the basis of static consideration 

of the process of breakup, which is a dynamic process having a nonstationary character. This will manifest itself 

in a decrease in the most stable size of the drops in time. The effect is slight, but for large times of transport of 

an emulsion in a pipeline it leads to a noticeable decrease in the size of the drops. Unfortunately, this effect has 

received practically no study, because it cannot be investigated under laboratory conditions. And finally, in real 

emulsions a substantial effect on the breakup of the drops will be exerted by the inhomogeneity of the composition 

of the continuous phase and the presence in it of very small gas inclusions and solid particles. The latter, of sizes 

of the order of 1.0-0.01/zm with a sufficient numerical density, facilitate the process of breakup and thus reduce 

the actual value of d.. 

To calculate the maximum size of breakup-resistant drops in a pipeline we recommend use of the formula 

d./D = 6.45 Re°6 /We 14 

N O T A T I O N  

d, D, diameter of the drops and the pipeline; ~, p, viscosity and density of the phases; cr, interphase tension; 

S, maximum velocity gradient; e, energy of dissipation; u, flow velocity; ~, coefficient of hydraulic resistance; Re, 

We, Reynolds and Weber numbers; Up, root-mean-square pulsational velocity. Subscripts: c and d, continuous and 

disperse phases. 
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